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Abstract. In this document we propose a compartmental epidemiological model in or-

der to estimate the maximal demand of critical health care facilities, needed by a city

(Santiago, Chile) during a COVID-19 outbreak. Considering as control variables the

rates of contacts with people in different stages of the disease, we report the variation

of maximal demands when different mitigation strategies are applied. We consider two

classes of these strategies: (i) testing, isolation and contact tracing; (ii) distancing mea-

sures. In this report we only give results for simulations of strategy (i).

1. Model formulation

The disease spread within a particular contaminated city is modeled by using a deter-

ministic compartmental model (see, for instance [1]). We use this approach in this report

because the simplicity and the rapidity to obtain some results that can be used later for

more complex models. We adapt the model proposed in [3] considering as main assump-

tion an isolated city. Thus, the model proposed consists of a compartmental model, where

the population is distributed into 7 groups corresponding to different stages of the disease:

Susceptible (S), exposed (E), infected (I), recovered (R), hospitalized (H), hospitalized re-

quiring critical services (Hc), and dead (D) as direct consequence of COVID-19. The total

population is then

(1) N = S + E + I +R+H +Hc.

As usual, these groups of stages are called state variables, so the vector of state variables is

x = (S,E, I,R,H,Hc, D). We omit to consider N as a state variable because of equality

(1).

The control variables to be considered are the actions on the rate of contagious denoted

by u = (uE , uI , uH , uHc) ∈ R4
+, where

(2) βX = pXuX
1
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with pX the probability to be exposed (i.e., infected but asymptomatic) after a contact

with a person in the stage X, and uX is the rate of contact with a person in the stage

X ∈ {E, I,H,Hc}.
One should have

uE ≥ uI ≥ uH ≥ uHc ≈ 0.

For this reason, we do not consider uH and uHc as control variables, because we will assume

these values constant and near to zero.

Now, for each control uX , with X ∈ {E, I} we consider reference values (to be calibrated)

uref
X > 0. Hence, uX(t) ∈ [0, uref

X ] for all t ≥ 0, with X ∈ {E, I}.
The objective of this study, is to report, for different strategies represented by uE(·) and

uI(·), the maximal demand of critical health facilities.

The evolution of state variables is described by the following system of ordinary differen-

tial equations:

(3)



Ṡ = µbN − S

Λ(x,u): rate of contagious︷ ︸︸ ︷(
βEE + βII + βHH + βHcHc

N

)
−µmS

Ė = S
(
βEE+βII+βHH+βHcHc

N

)
− (γE + µm)E

İ = γEE − (γI + µm)I

Ḣ = (1− φIR)γII + (1− φD)γHcHc − (γH + µm)H

Ḣc = (1− φHR)γHH − (γHc + µm)Hc

Ṙ = φIRγII + φHRγHH − µmR

Ḋ = φDγHcHc.

From (1) and (3) we obtain that the dynamics of the total population is

Ṅ = (µb − µm)N − φDγHHc.

The above system (3) is represented also in Figure 1 below.

2. Parameters

The parameters to be identified (literature and/or calibration) are

(4) P = (p, µb, µm, γ, φ, u
ref) ∈ [0, 1]4 × R+ × R+ × [0, 1]4 × [0, 1]3 × R4

+ ⊂ R17.

The descriptions of these parameters are the following:

• p = (pE , pI , pH , pHc) are the probabilities of contagious (see (2)) when a susceptible

person is in contact with a people in stages E, I, H, and Hc.

• µb is the natality rate in the city and µm is the mortality rate, both measured in

[day]−1;
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Figure 1. Structure of the mathematical model for the dynamics
of COVID-19 in an isolated city. Each circle represents a compart-
ment. Susceptible individuals (S), and different disease states: exposed
(E), infected (I), recovered (R), hospitalized (H), hospitalized requiring
critical services (Hc), and dead (D).

• Parameters γX measured in [day]−1 are the rate of transition from a disease stage

X ∈ {E, I,H,Hc} to the following stage, where γ−1
X represents the mean duration

of stage X;

• φIR is the fraction of infected people that recover;

• φHR is the fraction of hospitalized (in normal services) people that recover;

• φD is the fraction of hospitalized (in critical services) people that die;

• The vector uref = (uref
E , uref

I , , uref
H , , uref

Hc) contains references values of rates of con-

tact.

The baseline values and ranges considered for each parameter are indicated in Table 1.

The baseline values were obtained after calibration for obtaining a basic reproduction number

R0 = 2.15 [2] but associated with the proposed model (3). Ranges of values are taken from

literature and consideration of the authors of this report.

For initial conditions we consider the total population of 5.624 millions people, and an

estimation of cases until today. The values used are indicated in Table 2.
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Notation Unit Baseline Range of values References

pE dimensionless 0.1399 [0, 0.2] modeling team

pI dimensionless 0.855 [0.75, 0.9] modeling team

pH dimensionless 0.855 [0.75, 0.9] modeling team

pHc dimensionless 0.855 [0.75, 0.9] modeling team

µb [day]−1 3.57 · 10−5 [3.4 · 10−5, 3.6 · 10−5] INE CENSO 2017

µm [day]−1 1.57 · 10−5 [1.4 · 10−5, 1.6 · 10−5] INE CENSO 2017

γE [day]−1 0.185 [1/16, 1/5] modeling team

γI [day]−1 0.179 [1/16, 1/5] modeling team

γH [day]−1 0.116 [1/16, 1/8] [2] / modeling team

γHc [day]−1 0.121 [1/10, 1/8] [2] / modeling team

φIR dimensionless 0.9515 [0.95, 0.96] [2] / modeling team

φHR dimensionless 0.665 [0.65, 0.75] [2] / modeling team

φD dimensionless 0.385 [0.3, 0.4] modeling team

urefE dimensionless 0.82 [0, 0.82] modeling team

urefI dimensionless 0.32 [0, 0.32] modeling team

urefH dimensionless 0.01 fixed value modeling team

urefHc dimensionless 0.01 fixed value modeling team

Table 1. Parameters used in model (3), baseline and range values.

State Value (individuals)

S0 5.624 · 106

E0 1000

I0 440

H0 200

Hc
0 4

R0 100

D0 1

Table 2. Initial conditions for (3), considering the total population of
Santiago and an estimation of cases until today.

3. Representation of strategies

One of the objetives is to evaluate the impact of different mitigation strategies in the max-

imal demand of critical health care facilities. In a first approach, the strategies considered

are:

• Testing, isolation and contact tracing, represented by decreasing uE and uI

constantly. That is, uX(t) ≡ αXu
ref
X with αX ∈ {0.1, 0.5, 0.75} for X ∈ {E, I}. If

the effort to massive tests is not high, then αE > αI .

• Distancing measures (closing schools, universities, quarantines) represented by

decreasing uI and uE temporally. That is, consider a period of time [0, TX ] where

uX decreases, i.e.,

uX(t) =

 αXu
ref
X if t ∈ [0, TX ]

uref
X if t > TX ,

where αX ∈ {0.1, 0.5, 0.75} and TX ∈ {7, 14, 30} for X ∈ {E, I}. If the effort to

massive tests is not high, then αE > αI and TI > TE .
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4. Simulations

Given a vector of baseline parameters P = (p, µb, µm, γ, φ, u
ref) (see Table 1), and an

initial condition (S0, E0, I0, R0, H0, H
c
0 , D0) (see Table 2), we obtain the number of total

deaths due to COVID-19 (Dtotal), the maximal demand of hospitalized in non complex

services (Hmax), the maximal demand of critical facilities (Hc
max) and the time where this

demand is reached (tmax). These values are reported in Table 3 and Figure 2.

Dtotal Hmax Hc
max tmax (days)

36922 45761 13569 97

Table 3. Results for baseline scenario.

Figure 2. Baseline scenario April-October 2020. Without mitigation
strategies, the demand of critical health service will be above 10 thousand
units and the number of deaths above 5 thousands in mid June.

In this report we only simulate strategies of type testing, isolation and contact tracing.

In future versions we will include simulations of other strategies described in Section 3.

For different values of αX ∈ {0.1, 0.5, 0.75} (factor of reduction of contacts with exposed

and infected people) we consider uX(t) ≡ αXu
ref
X . The values obtained are presented in

Table 4 where we also report the percentage reduction of maximal critical demand with

respect the baseline scenario indicated in Table 3.

αE αI Dtotal Hmax Hc
max % gain tmax (days)

1 0.5 14989 14261 4455 67% 169
0.75 0.75 26367 23961 7383 46% 145
0.75 0.5 3204 4701 1347 90% 200
0.5 0.5 463 309 93 99% 200

Table 4. Results for different interventions of reducing contacts with ex-
posed and infected people. Reducing 50% the contact with exposed and
25% with infected, deaths are reduce drastically.
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5. Final remarks

• The total number of deaths obtained (only for Santiago) from our model in the

baseline scenario is very high, but is according to other studies in different cities as

in [2].

• The type of model presented allows to estimate the magnitude order of maximal

demands, but it is not appropriate for deducing an accurate estimation of daily

cases.

• The strategies simulated are not easy to interpret. Reducing the rate of contact

constantly we interpret as testing, isolation and contact tracing, because in this sce-

nario the contact of general population with exposed and infected people decrease.

Of course complete isolation of all population in their houses also reduce these rates

of contact but these measures can not implemented all the time. In next reports we

will simulate, based in the same model (3), other classes of strategies, as distancing

measures (closing schools, universities, quarantines) as explained in 3 or feedback

strategies as such tested in [2]. We think that some of the promising results showed

in Table 4 can be replicated with temporally measures. On the other hand, the

reduction of the rate of contacts in a factor αX is not straightforward to interpret.

The idea to use this factor is to show qualitatively where different efforts can imply

a higher impact.

• Simulations for other cities can be easily implemented.
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